Yanjie Zhong

Yanjie ZhongYanjie ZhongYanjie Zhong
Washington University in st. Louis

Yanjie Zhong

Yanjie ZhongYanjie ZhongYanjie Zhong
Washington University in st. Louis

Welcome

Hello, my name is Yanjie Zhong, a PhD candidate in statistics, advised by Professor Todd Kuffner and Professor Soumendra Lahiri.

EDUCATION

Ph.D. in Statistics, Washington University in St. Louis, 2018 – 2023 (expected) 

B.S. in Probability and Statistics, Peking University, China, 2014 – 2018 

RESEARCH INTEREST

Resampling Methods, Dependent Data, Missing Data, Statistical Inference, High Dimensional Statistics, Numerical Optimization

TEACHING

  • MEC 537: Data Analysis                           Graduate Teaching Assistant             Fall 2018
  • MATH 2200: Probability and Statistics      Assistant Instructor                            Fall 2019
  • DAT 537: Data Analysis                            Graduate Teaching Assistant             Fall 2019
  • MATH 2200: Probability and Statistics      Assistant Instructor                        Spring 2020
  • DAT 537: Data Analysis                            Graduate Teaching Assistant             Fall 2020
  • DAT 537: Data Analysis                            Graduate Teaching Assistant         Spring 2021
  • DAT 537: Data Analysis                            Graduate Teaching Assistant      Summer 2021
  • MATH 2200: Probability and Statistics      Assistant Instructor                            Fall 2021
  • DAT 537: Data Analysis                            Graduate Teaching Assistant             Fall 2021

Research Papers

    

  • Y. Zhong, T. Kuffner and S. Lahiri. Conditional randomization rank test.
  • Y. Zhong, T. Kuffner and S. Lahiri. Online bootstrap inference on non-convex SGD estimator. 
  • Y. Zhong, T. Kuffner and S. Lahiri. On the zeroth-order expectation maximization algorithm. 
  • Y. Zhong, J. Li and S. Lahiri. Probabilistic analysis of SARAH in non-convex finite sum problem. 
  • Y. Zhong, J. Li and S. Lahiri. Dimension-free concentration inequalities for vector martingales with subGaussian norm and applications in online learning. 
  • Z. Wang, Y. Zhong, Z. Ye, L. Zeng, Y. Chen, M. Shi, Z. Yuan, Q. Zhou, M. Qian, M.Q. Zhang (2021). MarkovHC: Markov hierarchical clustering for the topological structure of high-dimensional single-cell omics data with transition pathway and critical point detection. Nucleic Acids Research. 

Gallery

Overlook from the Gateway Arch, St. Louis

    Copyright © 2019 Yanjie Zhong- All Rights Reserved.


    Powered by GoDaddy Website Builder